Week 7 - Wednesday

- What did we talk about last time?
- Closest pair of points

Questions?

Logical warmup

- A man has two 10 gallon jars
- The first contains 6 gallons of wine and the second contains 6 gallons of water
- He poured 3 gallons of wine into the water jar and stirred
- Then he poured 3 gallons of the mixture in the water jar into the wine jar and stirred
- Then he poured 3 gallons of the mixture in the wine jar into the water jar and stirred
- He continued the process until both jars had the same concentration of wine
- How many pouring operations did he do?

Three-Sentence Summary of Integer Multiplication

Integer Multiplication

Multiplication by hand

How long does it take to do multiplication by hand when we count single digit addition or multiplication as an operation?

> 123 <u>x 456</u> 738 615 <u>492</u> 56088

- Let's assume that the length of the numbers is n digits
- (n multiplications + n carries) x n digits + (n + 1 digits) x n additions
- Running time: O(n²)

Can we do better?

- Imagine that we're in base 2, because it keeps things simple
- I want to find the product $x \cdot y$
- We can break *x* (and similarly *y*) into high-order part *x*₁ and low-order part *x*₀ such that *x* = *x*₁ · 2^{*n*/₂} + *x*₀ *xy* = (*x*₁ · 2^{*n*/₂} + *x*₀)(*y*₁ · 2^{*n*/₂} + *y*₀)
 = *x*₁*y*₁ · 2^{*n*} + (*x*₁*y*₀ + *x*₀*y*₁) · 2^{*n*/₂} + *x*₀*y*₀

Did that help things?

- Not really!
- We turned the multiplication of two *n*-bit numbers into the multiplication (and then addition) of four *n*/2-bit numbers
- $T(n) \le 4T\left(\frac{n}{2}\right) + cn$
- Which is $O(n^{\log_2 4}) = O(n^2)$, which is ... the same

We need a trick

- We want $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{\frac{n}{2}} + x_0y_0$
- What if we compute
 - $a = (x_1 + x_0) \cdot (y_1 + y_0) = x_1y_1 + x_0y_1 + x_1y_0 + x_0y_0$
 - $b = x_1 y_1$
 - $c = x_0 y_0$
- Then, $b \cdot 2^n + (a b c) \cdot 2^{\frac{n}{2}} + c =$
- $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{\frac{n}{2}} + x_0y_0$

Running time

- We do two additions before the multiplies: O(n)
- We do three recursive multiplies of n/2-bit numbers
- We do two additions and two subtractions after the multiplies: O(n)
- $T(n) \leq 3T\left(\frac{n}{2}\right) + cn$
- Which is $O(n^{\log_2 3}) \approx O(n^{1.59})$, which is better!

Note about multiplication

- Integer multiplication can be viewed as:
 - Polynomial multiplication
 - Vector convolution
- We will not cover section 5.6, but it describes the Fast Fourier Transform (FFT)
- The FFT can perform polynomial multiplication in O(n log n) time: even better than O(n^{1.59})
- However, the FFT has a big constant
- Using the FFT to multiply two integers only makes sense when the numbers are large, e.g., millions of digits

Master Theorem

Master Theorem

- Has a great name ...
- Allows us to determine the Big Theta running time of many recursive functions that would otherwise take more effort to determine

Basic form the recurrence relation must take

$T(n) = aT\left(\frac{n}{b}\right) + f(n),$ where $a \ge 1$ and b > 1

- **a** is the number of recursive calls made
- b is how much the quantity of data is divided by each recursive call
- f(n) is the non-recursive work done at each step

Case 1

• If
$$f(n)$$
 is $O(n^{\log_b(a)-\epsilon})$
for some constant $\epsilon > 0$, then
 $T(n)$ is $O(n^{\log_b(a)})$

Case 2

• If f(n) is $\Theta(n^{\log_b(a)} \log^k n)$ for some constant $k \ge 0$, then T(n) is $\Theta(n^{\log_b(a)} \log^{k+1} n)$

• If
$$f(n)$$
 is $\Omega(n^{\log_b(a)+\epsilon})$
for some constant $\epsilon > 0$, and if
 $af\left(\frac{n}{b}\right) \le cf(n)$
for some constant $c < 1$ and sufficiently large n ,
then

$$T(n)$$
 is $\Theta(f(n))$

Stupid Sort

Stupid Sort algorithm (recursive)

- Base case: List has size less than 3
 - Swap out of order items if necessary
- Recursive case:
 - Recursively sort the first 2/3 of the list
 - Recursively sort the second 2/3 of the list
 - Recursively sort the first 2/3 of the list again

- How long does Stupid Sort take?
- We need to know log_b a
- **a** = 3

Because I'm a nice guy, I'll tell you that the log_{1.5} 3 is about 2.7

We know that binary search takes O(log *n*) time
Can we use the Master Theorem to check that?

Practicing the Master Theorem

- One way to practice is to try to create a problems that different cases of the Master Theorem apply to
- Give a recurrence relation that uses Case 1
- Give a recurrence relation that uses Case 2
- Give a recurrence relation that uses Case 3

Upcoming

- More Master Theorem examples
- Solved Exercises

Reminders

- Work on Assignment 4
 - Due next Monday
- Exam 2 is next Wednesday
 - Review Chapters 4 and 5